
XQuery Processor

CSE 636 Fall 2008 Project Phase 1

November 7, 2008

The course project is the construction of an XQuery processor for a subset of the XPath and XQuery
languages as described below. In Phase 1, you will construct a naive query processor that receives an XQuery
expression, parses it into an abstract tree representation and evaluates the expression using a recursive
evaluation routine that given an XQuery expression (path, concatenation, element creation, etc) and one or
more input XML document nodes it produces a list of output nodes.

The project consists of three major components:

1. Parser: Use the XPath and XQuery grammars provided below to construct an XQuery parser using
the JavaCC parser generator.

2. XPath: Implement the XPath processor according to the semantics given in Section 1.

3. XQuery: Implement the XQuery processor, by utilizing the XPath processor, according to the se-
mantics given in Section 2.

You may team up with at most one partner for the project.

1 The XPath Sub-Language of XQuery

We consider XPath, the sublanguage of XQuery which deals with specifying paths along which the XML
tree is to be navigated to extract data from it. For the sake of simplicity, we will only consider a restriction
of the full W3C XPath standard.

Any expression generated by the following context-free grammar is a valid XPath expression:

(absolute path) ap → doc(fileName)/rp
| doc(fileName)//rp

(relative path) rp → tagName | ∗ | . | .. | text()
| (rp) | rp1/rp2 | rp1//rp2 | rp[f] |

(
(

((rp1, rp2(rp1, rp2)

(path filter) f → rp | rp1 = rp2 | rp1 eq rp2 | rp1 == rp2 | rp1 is rp2

| (f) | f1 and f2 | f1 or f2 | not f

The above grammar only helps us check whether an XPath expression p has the correct syntax. But
what is its meaning, that is, what is the result of extracting from an XML tree the data reachable by
navigating along p? To answer this question, we need to settle the following problem. How can one define
the meaning of any XPath expression without explicitly listing each such expression and, for each possible
XML document, the associated result? This would be an unfeasible approach, as there are infinitely many
XPath expressions, as well as infinitely many XML trees.

The solution is a standard one, adopted from programming language theory. We will define a function
which, applied to any XPath expression p and XML tree rooted at node n, will return the list of nodes
reachable by navigating along p. Recall that we consider two kinds of nodes in the XML tree: element
nodes, and text nodes. Text nodes may be associated to element nodes.

1

We will use the following functions:

function returns
[[ap]]A the list of (element or text) nodes reached by navigating from the root along absolute

path ap

[[rp]]R(n) the list of (element or text) nodes reachable from element node n by navigating along
the path specified by relative XPath expression rp.

[[f]]F (n) true if and only if the filter f holds at node n

root(fn) the root of the XML tree corresponding to the document fn

children(n) the list of children of element node n, ordered according to the document order

parent(n) a singleton list containing the parent of element node n, if n has a parent. The empty
list otherwise.

tag(n) the tag labeling element node n

txt(n) the text node associated to element node n

List manipulations We will also use the following notation on list manipulations. < a, b, c > denotes a
list of three entries (a is the first, c the last). <> denotes the empty list, and < e > is the singleton list with
unique entry e.

In the following, l1, l2 are the lists l1 =< x1, . . . , xn > and l2 =< y1, . . . , ym >.

l1, l2

denotes the concatenation of the two lists, i.e. the list < x1, . . . , xn, y1, . . . , ym >.

unique(l1)

denotes the list obtained by scanning l from head to tail and removing any duplicate elements that have
been previously encountered.

For example, < 1, 2, 3 >,< 2, 3, 4 >=< 1, 2, 3, 2, 3, 4 >, and unique(< 1, 2, 3 >,< 2, 3, 4 >) =< 1, 2, 3, 4 >.
The notation < f(x) | x← l1 > is called a list comprehension, and it is shorthand for a loop which binds

variable x in order against the entries of l1, and returns the list with entries given by applying f to each
binding of x:

< f(x) | x← l1 >=< f(x1), . . . , f(xn) >

A list comprehension can have arbitrarily many condition and variable binding expressions. In general,
if c(v1, . . . , vk) is a condition involving variables v1 through vk,

< f(v1, . . . , vk) | v1 ← l1, . . . , vk ← lk, c(v1, v2, . . . , vk) >

is short for the function defined by the following pseudocode fragment:

result := <>

foreach v1 in l1

...

foreach vk in lk

if c(v1,...,vk) then

result := result, <f(v1,...,vk)>

return result

We are now ready to define the meaning of an XPath expression:

2

[[doc(fileName)/rp]]A = [[rp]]R(root(fileName)) (1)

[[doc(fileName)//rp]]A = [[.//rp]]R(root(fileName)) (2)

[[tagName]]R(n) = < x | x← [[∗]]R(n), tag(x) = tagName > (3)

[[∗]]R(n) = children(n) (4)

[[.]]R(n) = < n > (5)

[[..]]R(n) = parent(n) (6)

[[text()]]R(n) = txt(n) (7)

[[(rp)]]R(n) = [[rp]]R(n) (8)

[[rp1/rp2]]R(n) = unique(< y | x← [[rp1]]R(n), y ← [[rp2]]R(x) >) (9)

[[rp1//rp2]]R(n) = unique([[rp1/rp2]]R(n), [[rp1/ ∗ //rp2]]R(n)) (10)

[[rp[f]]]R(n) = < x | x← [[rp]]R(n), [[f]]F (x) > (11)

�
�

�
�

�

[[rp1, rp2]]R[[(rp1, rp2)]]R(n) = [[rp1]]R(n), [[rp2]]R(n) (12)

[[rp]]F (n) = [[rp]]R(n) 6=<> (13)

[[rp1 = rp2]]F (n) = [[rp1 eq rp2]]F (n) = ∃x ∈ [[rp1]]R(n) ∃y ∈ [[rp2]]R(n) x eq y (14)

[[rp1 == rp2]]F (n) = [[rp1 is rp2]]F (n) = ∃x ∈ [[rp1]]R(n) ∃y ∈ [[rp2]]R(n) x is y (15)

[[(f)]]F (n) = [[f]]F (n) (16)

[[f1 and f2]]F (n) = [[f1]]F (n) ∧ [[f2]]F (n) (17)

[[f1 or f2]]F (n) = [[f1]]F (n) ∨ [[f2]](n) (18)

[[not f]]F (n) = ¬[[f]]F (n) (19)

Value-based and Identity-based Equality XPath distinguishes among two types of equality. Two
XML nodes n and m are value-equal (denoted n eq m or n = m) if and only if the trees rooted at them are
isomorphic. That is, if

• tag(n) = tag(m) and

• text(n) = text(m) and

• n has as many children as m and

• for each k, the kth child of n and the kth child of m are value-equal.

In other words, n is a copy of m. n and m are id-equal (denoted n is m or n == m) if and only if they are
identical. That is, a node n is only id-equal to itself. n is not id-equal to a distinct copy of itself. Note that
id-equality implies value-equality, but not vice versa.

2 The XQuery Sub-Language for the Project

The W3C XQuery standard contains many bells and whistles which we will abstract from for the sake of
simplicity. For our purposes, the syntax of XQuery is defined as follows:

3

(XQuery) XQ → V ar | StringConstant | ap
| (XQ) |

(
(

(
(

(XQ1,XQ2(XQ1,XQ2) | XQ/rp | XQ//rp
| 〈tagName〉{XQ}〈/tagName〉
| forClause whereClause returnClause

forClause → for V ar1 in XQ1, V ar2 in XQ2, . . . , V arn in XQn

whereClause → ǫ | where Cond

returnClause → return XQ

Cond → XQ1 = XQ2 | XQ1 eq XQ2

| XQ1 == XQ2 | XQ1 is XQ2

| (Cond) | Cond1 and Cond2 | Cond1 or Cond2 | not Cond

Element and Text Node Constructors We will use the function

makeElem(t, l)

which takes as arguments a tag name t and a (potentially empty) list of XML nodes l and returns a new
XML element node n with tag(n) = t and children(n) = l. Similarly,

makeText(s)

takes as argument a string constant s and returns an XML text node with value s.

[[V ar]]X = < V ar > (20)

[[StringConstant]]X = < makeText(StringConstant) > (21)

[[ap]]X = [[ap]]A (22)

[[(XQ)]]X = [[XQ]]X (23)

(
(

(
(

(
((

[[XQ1,XQ2]]X [[(XQ1,XQ2)]]X = [[XQ1]]X , [[XQ2]]X (24)

[[XQ/rp]]X = unique(< m | n← [[XQ]]X ,m← [[rp]]R(n) >) (25)

[[XQ//rp]]X = unique([[XQ/rp2]]X , [[XQ/ ∗ //rp2]]X) (26)

[[〈tagName〉{XQ}〈/tagName〉]]X = < makeElem(tagName, [[XQ]]X) > (27)

[[XQ1 eq XQ2]]C = [[XQ1 = XQ2]]C = ∃x ∈ [[XQ1]]X ∃y ∈ [[XQ2]]X x eq y (28)

[[XQ1 is XQ2]]C = [[XQ1 == XQ2]]C = ∃x ∈ [[XQ1]]X ∃y ∈ [[XQ2]]X x is y (29)

[[(Cond)]]C = [[Cond]]C (30)

[[Cond1 and Cond2]]C = [[Cond1]]C ∧ [[Cond2]]C (31)

[[Cond1 or Cond2]]C = [[Cond1]]C ∨ [[Cond2]]C (32)

[[not Cond]]C = ¬[[Cond]]C (33)

Finally, we have
















for V ar1 in XQ1, . . . ,
V arn in XQn

where Cond
return XQn+1

















X

=
< [[XQn+1]]X |

V ar1 ← [[XQ1]]X , . . . , V arn ← [[XQn]]X
[[Cond]]C >

(34)

4

3 Deliverables

Component\Due Date Command Line Output Format
Parser
Monday, October 6th XQueryParser xqueryfile.xq Your XQueryParser class should print

out the abstract tree of the input
XQuery expression.

XPath Processor
Friday, October 24th XPathProcessor xpathfile.xq Your XPathProcessor class should print

out the result of evaluating the XPath
expression in the input file.

XQuery Processor
Monday, November 10th XQueryProcessor xqueryfile.xq Your XQueryProcessor class should

print out the result of evaluating the
XQuery expression in the input file.

For each deliverable, only one of the team members should email the instructor a .zip archive containing
the following items:

• A README.txt file describing the archive contents.

• A PDF file describing your implementation.

• All the source code you wrote for the deliverable in folder src.

• All the compiled code for the deliverable in folder bin.

Important All Java classes mentioned in the “Command Line” column above should be located within the
bin folder. Since your deliverables will be graded using a script, all trees that are printed out should follow
the same format and tabulation as the output format of DOMPrinter class provided with this specification.

5

